Precision Near-Field Reconstruction in the Time Domain via Minimum Entropy for Ultra-High Resolution Radar Imaging

نویسندگان

  • Jiwoong Yu
  • Min-Ho Ka
چکیده

Abstract: Ultra-high resolution (UHR) radar imaging is used to analyze the internal structure of objects and to identify and classify their shapes based on ultra-wideband (UWB) signals using a vector network analyzer (VNA). However, radar-based imaging is limited by microwave propagation effects, wave scattering, and transmit power, thus the received signals are inevitably weak and noisy. To overcome this problem, the radar may be operated in the near-field. The focusing of UHR radar signals over a close distance requires precise geometry in order to accommodate the spherical waves. In this paper, a geometric estimation and compensation method that is based on the minimum entropy of radar images with sub-centimeter resolution is proposed and implemented. Inverse synthetic aperture radar (ISAR) imaging is used because it is applicable to several fields, including medicaland security-related applications, and high quality images of various targets have been produced to verify the proposed method. For ISAR in the near-field, the compensation for the time delay depends on the distance from the center of rotation and the internal RF circuits and cables. Required parameters for the delay compensation algorithm that can be used to minimize the entropy of the radar images are determined so that acceptable results can be achieved. The processing speed can be enhanced by performing the calculations in the time domain without the phase values, which are removed after upsampling. For comparison, the parameters are also estimated by performing random sampling in the data set. Although the reduced data set contained only 5% of the observed angles, the parameter optimization method is shown to operate correctly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ISAR Image Improvement Using STFT Kernel Width Optimization Based On Minimum Entropy Criterion

Nowadays, Radar systems have many applications and radar imaging is one of the most important of these applications. Inverse Synthetic Aperture Radar (ISAR) is used to form an image from moving targets. Conventional methods use Fourier transform to retrieve Doppler information. However, because of maneuvering of the target, the Doppler spectrum becomes time-varying and the image is blurred. Joi...

متن کامل

Imaging for Detecting Breast Cancers Using UWB Radar Technology

Ultra wide band (UWB) microwave imaging has recently been proposed for detecting small malignant breast tumors and is expected to detect breast tumors with safety, comfort and precision for high resolution of UWB pulse. In this paper, we propose a new imaging method that uses circle approximation to detect the cancer in order for automatically detection without doctors’ analysis. Our proposal m...

متن کامل

Proposing New Methods to Enhance the Low-Resolution Simulated GPR Responses in the Frequency and Wavelet Domains

To date, a number of numerical methods, including the popular Finite-Difference Time Domain (FDTD) technique, have been proposed to simulate Ground-Penetrating Radar (GPR) responses. Despite having a number of advantages, the finite-difference method also has pitfalls such as being very time consuming in simulating the most common case of media with high dielectric permittivity, causing the for...

متن کامل

Uwb Radar Holography Applied to Rcs Signature Reduction of Military Vehicles

Ultra wide band (UWB) radar hologmphy is a unique technique developed at PNNL for the U. S. Army to obtain nearfield "3-D" images and scattering characteristics of full-size vehicles in the field and at productwn line facilities. The extremely high-resolution imaging capability of this technique maps a vehicle's scattering areas and idenhfies the "hot spots" which dominate the far-field signatu...

متن کامل

Ultra-Wideband Sensors for Improved Magnetic Resonance Imaging, Cardiovascular Monitoring and Tumour Diagnostics

The specific advantages of ultra-wideband electromagnetic remote sensing (UWB radar) make it a particularly attractive technique for biomedical applications. We partially review our activities in utilizing this novel approach for the benefit of high and ultra-high field magnetic resonance imaging (MRI) and other applications, e.g., for intensive care medicine and biomedical research. We could s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017